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ABSTRACT

The concept of operations in future battlefields is undergoing a transition toward mosaic and decision-centric warfare.
This situation demands an intelligent decision support system that conducts swift and accurate battlefield analysis and
command decisions by utilizing artificial intelligence (Al) technologies. Essentially, the construction of an intelligent
command and control system requires the integration of specific technologies that facilitate the development of
command decision support using Al. Therefore, to assist the decision-making processes for ground operations
involving forces, such as infantry and armored forces, we are developing techniques to make the Al-command decision
support for ground operations (AICDS-G). This study presents comprehensive concepts and methodologies of
AICDS-G. In the AICDS-G system, the Battlefield Digital Twin (BDT) simulates the battlefield scenarios, including
ground forces and behaviors of both enemies and allies, and it is employed for realistic battlefield simulation and as
an Al learning environment. AICDS-G is comprised of sequential processes that are designed to aid command
decisions for ground operations. Initially, enemy threat analysis anticipates their behavior and evaluates the threat
using deep learning models, such as a graph neural network. Subsequently, within the learning environment of BDT,
models, such as reinforcement learning, are employed to analyze the optimal assignment or distribution of friendly
forces to take action against the assessed enemy threat. Moreover, the findings from the enemy threat analysis and the
assigned friendly forces are assessed to determine the optimal placements as a part of a course of action. Finally, the
development of operation support and visualization software are undertaken to support users of AICDS-G. In addition
to the experimental results, this research proposes the development of specific methodologies, models, and software
related to these processes and concepts.
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INTRODUCTION

The concept of future warfare is transformed by mosaic warfare, decision-centric warfare, and the demand for
intelligent command and control systems is growing with the emergence of innovative technologies within the Fourth
Industrial Revolution, such as artificial intelligence (Al). In other words, intelligent battlefield analysis and
countermeasure support technologies are crucial to conducting operations on the future battlefield. This requirement
is reinforced by the enhanced precision and sophistication of combat equipment and the increasing uncertainty of
battlefield conditions (ARMY, U, 2019).

Consequently, we are engaged in research on the Al-command decision support for ground operations (AICDS-G) to
establish intelligent command and decision support technology that can be effectively implemented in ground
operations. In this research, we model the Battlefield Digital Twin (BDT) to accurately mirror the battlefield
environment and the actions of both enemy and friendly forces. Utilizing Al learning models, we analyze enemy
threats and determine a course of action (CoA). Furthermore, we designed tools to facilitate user operations and
visualization for AICDS-G. Figure 1 illustrates the comprehensive developmental concept of AICDS-G.
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Figure 1. Overall Development Concept of AICDS-G

In the development of an AICDS-G, the BDT simulates the battlefield, including ground forces and the behaviors of
both enemy and friendly forces. This simulation provides a realistic representation of the ground battlefield conditions
and an Al learning environment. AICDS-G is composed of sequential processes to support command decisions for
ground operations.

First, the enemy threat analysis (ETA) foresees enemy behavior and evaluates their threat level using deep-learning
models, such as graph neural networks (GNN). Second, within the learning environment of BDT, models, such as
reinforcement learning (RL), are employed to analyze the optimal distribution of friendly forces to take action against
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the analyzed enemy’s threat. Third, the enemy’s threat analysis results and the allocation of friendly forces are
thoroughly examined based on its optimized positions, integrated into the course of action (CoA) for friendly forces.
Finally, specific operation support and visualization software are developed to support the functionality of AICDS-G

for its users.

The operational configuration and procedural flow based on the integration of AICDS-G are illustrated in Figure 2.
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Figure 2. Operational Configuration of AICDS-G
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The development of concepts, methodologies, and models related to these operation processes of AICDS-G are

described in the following sections.
BATTLEFIELD DIGITAL TWIN (BDT)

The BDT is based on modeling and simulation (M&S)
and is developed in its main format in the AICDS-G, as
illustrated in Figure 3. This consists of two primary
components: first, a battlefield simulator that generates
virtual battlefield situations using high-resolution
simulation models to vyield detailed information
concerning battlefield engagements; second, as a function
that supports Al learning, BDT serves as the learning
environment for engagement simulations, applying
learning models to analyze the CoA for friendly forces.
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Figure 4. Composition and Execution Flow of Battlefield
Simulation

As depicted in Figure 4, the object modeling and architectural framework are structured through ComSAF (Kim, et
al., 2014), which is battlefield simulation software developed by the ADD and is currently a benchmark of the U.S.
OneSAF. This process involves the design and application of specific tasks and actions for offensive and defensive
maneuvers against both enemy and friendly forces, enabling simulated units and entities to emulate real-world
battlefield combat. The array of simulated tasks and actions including various operations such as movement, detour,
pioneering, fire attack, guarding, seizure, sustainment, and reconnaissance are detailed in Figure 4.

Table 1. Overall Simulated Information/Data of Battlefield

Items Main Simulated Information/Data
Initial info. for
simulated Enemy and Friendly Force Status Information for Simulation Scenarios
battlefield
Unit static info. ID, Size, Branch, Weapons, Etc. of Units

Unit dynamic info. | Location, Velocity, Combat Power, Current Personnel and Weapon Status, Tasks, Etc.
Unit Detection info. | Detected Units, Detection Distance, Etc.
Unit Engagement | Engaged Units, Target entities, Engagement Distance, Unit Damage Personnel and
/Damage info. Weapons, Attacking Units and Entities, Etc.
ID, Type, Weapon, Equipment, Affiliation, Maximum Detection Distance, Weapon
Range and Speed, Etc.

Entity static info.

Entity dynamic Location, Velocity, Status, Etc. of Entity

info.
Entltyir(]jfe;tectlon Detected Entity, Detection Range, Etc. of Entity
Entity filrr]%damage Units & Entities for fire, Target, Damage, Weapon Type, Target & Firing Position, Etc.

Development of a Learning Environment for Engagement Simulation

The CoA analysis is dedicated to the optimization of friendly force allocation and positioning to effectively counter
enemy threat. The intelligence of the CoA analysis is actualized through Al neural network learning. To this end, the
BDT-based learning environment for engagement is developed. This specialized learning environment for engagement
simulation provides functionalities for creating and modifying battlefield scenarios, aimed at replicating ground
operations. Incorporating techniques such as batch execution, time acceleration, distributed processing, and parallel
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processing, it enables the mass generation of diverse battlefield scenarios. This optimizes the training duration as well
as enhances the generalization performance of Al learning models in battlefield scenarios. Moreover, the learning
environment is equipped with an interface referred to as the "blackboard,” which communicates with battlefield
unit/entity models, behavioral models, and task execution models provided by the BDT to conduct Al training. Each
unit or entity of the engagement simulation process is assigned a unique address on the blackboard. Through the
Google Remote Procedure Call (gRPC), data including unit status, entity status, action requests, and results are
transmitted and received, synchronizing with the Al learning process by accessing information at the respective
address.

ENEMY THREAT ANALYSIS (ETA)

ETA utilizes learning models to identify the behavior of enemies and calculates the vulnerability of friendly forces
through capability- and relation-based analysis using fuzzy logic. Thereafter, the behavior, vulnerabilities, and
acquired information and attributes of the identified enemy are used to infer the probabilities of threat, yielding the
degree and ranking of the enemy's threat (Figure 5).
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Figure 5. Overall Development Concept of ETA
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The structural configuration of the learning model designated for enemy behavior and threat analysis is depicted in
Figure 9. Within this structure, the dynamic graph applied to the learning model is characterized by the information
of nodes and edges that undergo temporal alterations. The learning model utilizes GNN, a network adept at analyzing
data arranged in graphs, and graph embedding, a technique that can express the entire graph as a vector. Subsequently,
arecurrent neural network (RNN) is implemented to comprehend the evolution of the battlefield conditions over time,
based on the results associated with each node in the GNN (Shim et al., 2022), as demonstrated in Figure 9.

Learning Experiment and Result

The battlefield simulation data used in the experiments with the training model depicted in Figure 9 were generated
approximately 1000 times, utilizing four ground engagement scenarios. Within these scenarios, one task (behavior)
was assigned to each enemy unit, comprising tactical movements, siege, and assault tactics. Each simulation contains
30 enemy entities and 24 friendly entities, with 6 units each for enemy and friendly infantry. Moreover, unit- and
entity-specific data, such as identification, type, firepower, position, damage status, and attacks, are generated every
second for an approximate duration of 20 min. The six enemy force tasks (behaviors) applied in the simulation include
garrison occupation, tactical movement, rally point behavior, besiege, assault, and ambush.

Table 2 presents the results of the enemy behavior and threat probability analysis conducted using the proposed model

on these simulated data. A comparative analysis using the proposed model and a typical multilayer perceptron (MLP)
is provided as well. Moreover, the F1-score of the behavior analysis performance of the proposed model was
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determined to be 0.94, whereas the area under the ROC curve (AUROC) for the threat probability analysis
performance was found to be 0.98, thereby indicating significant learning outcomes. Consequently, we are currently
conducting learning experiments in simulated battlefield environments considering various enemy units, entities, and
tasks (behaviors).
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Figure 9. Learning Modeling for ETA

Table 2. Experiment results of Enemy's Behavior and Threat Probability Analysis
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COURSE OF ACTION (CoA) ANALYSIS

A battlefield scenario for defensive ground operations under AICDS-G occurs when enemy and friendly forces are
arrayed in a line of battle and confronting each other, with an anticipated enemy offense. As illustrated in Figure 10,
the simulation initiates with the deployment of friendly forces up to a designated analysis point, after which it pauses
to formulate an operational plan to counter the enemy’s assault. At this juncture of the analysis, the CoA analysis
generates friendly action by employing an Al learning model that operates within the learning environment for
engagement simulation based on BDT. The CoA of the friendly forces, i.e., the principal component of the CoA, is
created by assessing the allotment and disposition of friendly forces. The formulated CoA is converted to an executable
CoA within BDT, and the battlefield simulation proceeds with this CoA after the previously paused analysis point.

| I |
| ~ |
Tstart Tanalysis Ten"
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Simulation Start 1. Analysis Execute(Enemy’s threat, CoA) Simulation End
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Figure 10. Overall Development Concept of CoA Analysis

Force Allotment Analysis (FAA)

The Force Allotment Analysis (FAA) implements RL models to ascertain the optimal allocation or distribution of
friendly forces and counter the identified enemy threats. FAA corresponds to the concept of allotting friendly force in
the development of the CoA (Park et al., 2022). In the conventional CoA development process, the distribution of
friendly forces is achieved by comparing the tangible or intangible combat power of the enemy and friendly forces
based on their primary tasks of evaluation of their relative dominance (FM 6-0, 2015). However, the diversification
and sophistication of weapon systems have posed limitations to the effective application of numerical analysis via
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Figure 11. Development Concept of FAA
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conventional unit counts, combat power indexes, etc. FAA introduces a methodology that leverages RL to enhance a
commander’s decision-making regarding force allotment. As portrayed in Figure 11, FAA encompasses learning
support, setting avenues, force allotment learning, and force allotment inference. It further guides the distribution and

allocation of available friendly units and entities by avenue and target based on the outcomes of ETA, user input data
obtained from operation support, and avenue DB.

The learning support feature of FAA facilitates an interconnected environment between the learning environment for
engagement simulation and the Al learning model. This integration is specifically crafted to interface the state, an
individual agent’s observation, action, and reward information, crucial for the structure of the Markov decision process
(MDP) in RL. The primary functionality of this integration lies in the distribution of each learning scenario, thereby
enabling parallel processing to learn multiple scenarios simultaneously.
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Figure 13. Learning Modeling of FAA

On the battlefield, each unit or entity possesses only a partial view of the entire terrain, mediated through its sensing
and communication apparatus. The essentiality of close coordination between units for victory leads FAA to construct
the model utilizing multiagent reinforcement learning (MARL) in a decentralized partially observable Markov
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decision process (Dec-POMDP) environment (Oliehoeck & Amato, 2016). Figure 13 depicts the architecture of the
RL model proposed by FAA. By integrating value-based MARL approaches such as value decomposition networks
(VDN) and QMIX (Rashid et al., 2020) within the centralized training with decentralized execution (CTDE) paradigm,
the model is fashioned to learn cooperative behavior. This learning is achieved through the exchange of parameters
among agents representing friendly forces, facilitated by long short-term memory (LSTM) cells. The action space in
this model delineates actions as maneuvers by forces like infantry companies or tank platoons along avenues, and the
provision of fire support against enemies by artillery units. Continuous updates and training of the entire network
minimize temporal difference errors, employing deep Q-networks and defining a reward function predicated on the
state information depicted in the engagement simulation environment, along with the outcomes of individual combat,
the win/loss scenario, and task accomplishment. Instead of confining the learning network to a single scenario, a
structure is designed that permits the network to adapt across various scenarios. The culmination of this process is the
optimal allocation and distribution of friendly maneuver and artillery force, calibrated to counter the enemy within
specific battlefield scenarios, and additionally, the sequential actions of friendly forces and their contributions to the
engagement throughout the learning process.

As a prototype to test the proposed methodology, we constructed a simulator of enemy and friendly engagements to
perform MARL. To simulate a battle, enemy and friendly forces have the same speed, detection, and weapon ranges,
and an attack is automatically triggered when an enemy is detected within weapon range. To define the MDP structure
of RL, we define six elements of action: moving east-west, north-south, maintaining previous behavior for
pathfinding, and no action (when the object is destroyed). The fundamental elements of the state are defined as latitude,
longitude, altitude, velocity, and damage.

Figure 14. (a) illustrates the test battle scenario, staging a situation where two enemy tanks traverse the road in a
formation, followed by the representation of MARL's outcomes on the planned path and collaboration of scattered
friendly tanks in the vicinity of the enemy tanks (Figure 14. (b)). A total of 1 million timesteps of training were
conducted, and 10 battles were engaged with the trained agent to compute the win rate. Observations thus far indicate
a trend toward an elevation of the win rate to approximately 30%. This finding aligns closely with the outcomes of
training the QMIX algorithm for 1 million timesteps within a simulated engagement of StarCraft Il (Figure 14. (c)).
Such results underscore that future enhancements in training will potentially engender a learning agent proficient in
optimal path planning and allotment.
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Figure 14. (a) Test Battle Scenario, MARL Learning curves for (b) Test Battle Scenario and (c) StarCraftll

Force Disposition Analysis

Force Disposition Analysis is designed to optimize the movement of friendly units and entities from a designated
analysis point to a specified temporal juncture. The conceptual realm of the disposition space is infinitely vast,
compounded by computational resources and temporal constraints in executing engagement simulations for each
decision, and subsequently reflecting the outcomes. To address this complexity, we employ a Bayesian optimization
technique founded on Gaussian process regression (Snoek, Larochelle, & Adams, 2012). This approach is capable of
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achieving adequate effectiveness by utilizing an adaptive quantum of training data and an uncertain distribution
characterizing the battlefield. Constraints are instituted regarding the extent to which a unit or entity may be mobilized
over a defined time frame, along with pre-established candidates for displacement.

The specific intent and objectives as defined by a commander in a given scenario necessitate the formulation of an
objective function. This function articulates a quantifiable outcome, such as the count of enemy forces arriving at a
target location or the number of enemy forces neutralized by friendly units. The application of Gaussian process
regression requires the estimation of a surrogate model or response surface containing a covariance matrix. This
estimation is carried out by conducting an engagement simulation, in which friendly force disposition is treated as a
variable while other information, including enemy force disposition and avenue information, remains fixed. Based on
the probabilistic estimation of the objective function by the surrogate model, the acquisition function, which
recommends candidate dispositions for upcoming examination of the function, can produce the disposition and
uncertainty of the friendly forces that are expected to yield the best objective function value.

OPERATION SUPPORT AND VISUALIZATION

The operation support and visualization of AICDS-G integrates, processes, and visualizes battlefield information and
data provided by BDT's battlefield simulation and analysis results of the enemy's threats and the friendly force's CoA
to provide forms and schematics to users. The user operation support plays a role in operating and controlling each
analysis software, building and managing the battlefield information and data provided by BDT and the results of each
analysis into a database, and providing the data required by each analysis, as shown in Figure 15.

[Multiview Visualization]
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- Integrated Data

[User Operation Support]

Battlefield Enemy Threat o  CcoA
Visualization Data Visualization Data/ Visualization Data

Battlefield
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AICDS Integrated - Simulation Battlefield Data/Information

Management |nteg rated DB - Additional Battlefield Data/Information
- Analysis Result
t 1- Input/Control
Simulation Battlefield - Control/Input - Battlefield Information/Data
- Simulation Battlefie - Battlefield Information/Data - Enemy Threat Analysis Result '
Information/Data . - Force Allotment/Disposition Analysis Result
- Enemy Threat Analysis Result 4 - Expected Enemy Operation Infomation

Battlefield Enemy Threat DT based
Simulation Analysis COA Analysis

(Battlefield DT)

- Input of Battlefield Simulation According to Selected COA
- Selected COA Battlefield Simulation Analysis Result

Figure 15. Overall Development Concept of Operation Support and Visualization

User Operation Support

The following is a description of the main configuration and features of user operations support. First, the battlefield
information and data management support function accepts simulated battlefield data from BDT and organizes it
within a database. It generates additional data, such as the motion or relocation status of units based on simulated
battlefield data, and provides battlefield situation visualization and a battlefield data list. This enables users to
comprehend the battlefield context.
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Second, the ETA operational support
exploits the battlefield information and
data stored in the database and the results
of the ETA. It furnishes the user with
fundamental details, such as the position,
mobility, weapon range, etc., of the
enemy force. Moreover, it supplies
information concerning enemy threats,
including enemy activities, such as
movement and assault, the vulnerability
of the friendly force to the enemy force,
and the threat degree and ranking of the
enemy force. These details are presented
in schematics or forms to the user (Shim
et al., 2022), as illustrated in Figure 16.

As depicted in Figure 17, the CoA analysis
operational support utilizes simulated
battlefield data and ETA results stored in
the database to furnish users with the
allotment and displacement analysis
outcomes of friendly forces obtained from
the CoA analysis. In the case of the FAA,
the stored terrain and environmental data
are employed to generate a list of avenue
candidates along with their attributes,
which are subsequently visualized and
presented to users. According to the
avenues chosen through the FAA, the unit
symbols and essential attributes of the
corresponding friendly forces are rendered
in schematic and format for each enemy
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Figure 17. Operation Support Concept for CoA Analysis

force. Furthermore, it also visualizes and provides candidates with the friendly force displacement analysis and the
optimal displacement results of friendly forces, as calculated through Bayesian optimization techniques.

Multiview Visualization
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Figure 18. Multiview of AICDS-G
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The development of multiview visualization is developed to support command decisions by furnishing commanders
with sequential diagrams at pivotal decision junctures utilizing simulated battlefield data, ETA, and CoA analysis
results (Ryu, Shim, & Park, 2022). As presented in Figure 18, this approach amalgamates the visualization elements
of the battlefield situation, enemy threat circumstances, and force allotment and displacement for each stage of
AICDS-G. Furthermore, it interweaves these visualization components with the data generated during the analysis
process of the learning model, thereby constructing a multiview visualization screen. To this end, multiview
visualization employs an array of temporal, linked, and geospatial visualization representation techniques (Park &
Yun, 2021).

CONCLUSION

To build an intelligent command and control system, the command decision support technology must be developed
using Al. Therefore, we are developing AICDS-G technology with the capability to support command decisions
during ground operations. Herein, we developed the concept, methodology, model, and architecture of the AICDS-G
technology.

For developing AICDS-G, we examined the evolution of the BDT and simulated battlefield conditions, including
enemy and friendly forces and their behaviors, to generate realistic simulation data that can serve as a learning
environment. Furthermore, we proposed the development of an ETA module that forecasts the behavior and threats
of enemy forces using GNN and RNN models. Subsequently, we discussed the development of an optimal force
allotment and disposition methodology via Al learning models, such as reinforcement learning and Bayesian
optimization, synergized with the environment of the engagement simulation. Finally, we presented the development
of user operation support and multiview visualization for AICDS-G.

In future, through the integration of these AICDS-G development concepts and methodologies, we plan to verify each
developmental function and performance by implementing them into application software that can be adeptly utilized
by users.
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