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ABSTRACT 

 

The concept of operations in future battlefields is undergoing a transition toward mosaic and decision-centric warfare. 

This situation demands an intelligent decision support system that conducts swift and accurate battlefield analysis and 

command decisions by utilizing artificial intelligence (AI) technologies. Essentially, the construction of an intelligent 

command and control system requires the integration of specific technologies that facilitate the development of 

command decision support using AI. Therefore, to assist the decision-making processes for ground operations 

involving forces, such as infantry and armored forces, we are developing techniques to make the AI-command decision 

support for ground operations (AICDS-G). This study presents comprehensive concepts and methodologies of 

AICDS-G. In the AICDS-G system, the Battlefield Digital Twin (BDT) simulates the battlefield scenarios, including 

ground forces and behaviors of both enemies and allies, and it is employed for realistic battlefield simulation and as 

an AI learning environment. AICDS-G is comprised of sequential processes that are designed to aid command 

decisions for ground operations. Initially, enemy threat analysis anticipates their behavior and evaluates the threat 

using deep learning models, such as a graph neural network. Subsequently, within the learning environment of BDT, 

models, such as reinforcement learning, are employed to analyze the optimal assignment or distribution of friendly 

forces to take action against the assessed enemy threat. Moreover, the findings from the enemy threat analysis and the 

assigned friendly forces are assessed to determine the optimal placements as a part of a course of action. Finally, the 

development of operation support and visualization software are undertaken to support users of AICDS-G. In addition 

to the experimental results, this research proposes the development of specific methodologies, models, and software 

related to these processes and concepts. 
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INTRODUCTION  

 

The concept of future warfare is transformed by mosaic warfare, decision-centric warfare, and the demand for 

intelligent command and control systems is growing with the emergence of innovative technologies within the Fourth 

Industrial Revolution, such as artificial intelligence (AI). In other words, intelligent battlefield analysis and 

countermeasure support technologies are crucial to conducting operations on the future battlefield. This requirement 

is reinforced by the enhanced precision and sophistication of combat equipment and the increasing uncertainty of 

battlefield conditions (ARMY, U, 2019).  

 

Consequently, we are engaged in research on the AI-command decision support for ground operations (AICDS-G) to 

establish intelligent command and decision support technology that can be effectively implemented in ground 

operations. In this research, we model the Battlefield Digital Twin (BDT) to accurately mirror the battlefield 

environment and the actions of both enemy and friendly forces. Utilizing AI learning models, we analyze enemy 

threats and determine a course of action (CoA). Furthermore, we designed tools to facilitate user operations and 

visualization for AICDS-G. Figure 1 illustrates the comprehensive developmental concept of AICDS-G.  

 

In the development of an AICDS-G, the BDT simulates the battlefield, including ground forces and the behaviors of 

both enemy and friendly forces. This simulation provides a realistic representation of the ground battlefield conditions 

and an AI learning environment. AICDS-G is composed of sequential processes to support command decisions for 

ground operations. 

First, the enemy threat analysis (ETA) foresees enemy behavior and evaluates their threat level using deep-learning 

models, such as graph neural networks (GNN). Second, within the learning environment of BDT, models, such as 

reinforcement learning (RL), are employed to analyze the optimal distribution of friendly forces to take action against 

Figure 1.  Overall Development Concept of AICDS-G 



 
 

 

[2023] Interservice/Industry Training, Simulation, and Education Conference (I/ITSEC) 

I/ITSEC [2023] Paper No. 23226 Page 4 of 15 

the analyzed enemy’s threat. Third, the enemy’s threat analysis results and the allocation of friendly forces are 

thoroughly examined based on its optimized positions, integrated into the course of action (CoA) for friendly forces. 

Finally, specific operation support and visualization software are developed to support the functionality of AICDS-G 

for its users. 

The operational configuration and procedural flow based on the integration of AICDS-G are illustrated in Figure 2. 

 

① Operation of battlefield simulation (Setting simulation scenarios) 

② Forwarding battlefield simulation data & simulation control 

③ Control and Input/Results of ETA  

④ Control and Input/Results of CoA analysis 

⑤ Decision of optimal CoA 

⑥ Input of battlefield simulation for optimal CoA 

⑦ Results of battlefield simulation for optimal CoA 

 

The development of concepts, methodologies, and models related to these operation processes of AICDS-G are 

described in the following sections. 

 

BATTLEFIELD DIGITAL TWIN (BDT) 

 

The BDT is based on modeling and simulation (M&S) 

and is developed in its main format in the AICDS-G, as 

illustrated in Figure 3. This consists of two primary 

components: first, a battlefield simulator that generates 

virtual battlefield situations using high-resolution 

simulation models to yield detailed information 

concerning battlefield engagements; second, as a function 

that supports AI learning, BDT serves as the learning 

environment for engagement simulations, applying 

learning models to analyze the CoA for friendly forces. Figure 3. Concepts of BDT Development 

Figure 2. Operational Configuration of AICDS-G 
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Battlefield Modeling and Simulation 

 

In the context of the battlefield M&S 

of the BDT, simulated battlefield 

objects are formulated for units and 

entities, mirroring the requisite 

capabilities of objects deployed in both 

current and prospective ground 

operations. This includes the 

representation of enemy or friendly 

forces such as infantry platoons, tanks, 

and artillery. In these instances, 

simulated objects are developed using 

mocking techniques based on semi-

automated forces (SAF) (Wittman & 

Courtemanche, 2002) to enable high-

resolution and automated simulation, 

thereby minimizing user intervention. 

As depicted in Figure 4, the object modeling and architectural framework are structured through ComSAF (Kim, et 

al., 2014), which is battlefield simulation software developed by the ADD and is currently a benchmark of the U.S. 

OneSAF. This process involves the design and application of specific tasks and actions for offensive and defensive 

maneuvers against both enemy and friendly forces, enabling simulated units and entities to emulate real-world 

battlefield combat. The array of simulated tasks and actions including various operations such as movement, detour, 

pioneering, fire attack, guarding, seizure, sustainment, and reconnaissance are detailed in Figure 4. 

 

Table 1. Overall Simulated Information/Data of  Battlefield 

Items Main Simulated Information/Data 

Initial info. for 

simulated 

battlefield 

Enemy and Friendly Force Status Information for Simulation Scenarios 

Unit static info. ID, Size, Branch, Weapons, Etc. of Units 

Unit dynamic info. Location, Velocity, Combat Power, Current Personnel and Weapon Status, Tasks, Etc. 

Unit Detection info. Detected Units, Detection Distance, Etc. 

Unit Engagement 

/Damage info. 

Engaged Units, Target entities, Engagement Distance, Unit Damage Personnel and 

Weapons, Attacking Units and Entities, Etc. 

Entity static info. 
ID, Type, Weapon, Equipment, Affiliation, Maximum Detection Distance, Weapon 

Range and Speed, Etc. 

Entity dynamic 

info. 
Location, Velocity, Status, Etc. of Entity 

Entity detection 

info. 
Detected Entity, Detection Range, Etc. of Entity 

Entity fire/ damage 

info. 
Units & Entities for fire, Target, Damage, Weapon Type, Target & Firing Position, Etc. 

 

Development of a Learning Environment for Engagement Simulation 

 

The CoA analysis is dedicated to the optimization of friendly force allocation and positioning to effectively counter 

enemy threat. The intelligence of the CoA analysis is actualized through AI neural network learning. To this end, the 

BDT-based learning environment for engagement is developed. This specialized learning environment for engagement 

simulation provides functionalities for creating and modifying battlefield scenarios, aimed at replicating ground 

operations. Incorporating techniques such as batch execution, time acceleration, distributed processing, and parallel 

Figure 4. Composition and Execution Flow of Battlefield 

Simulation 
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processing, it enables the mass generation of diverse battlefield scenarios. This optimizes the training duration as well 

as enhances the generalization performance of AI learning models in battlefield scenarios. Moreover, the learning 

environment is equipped with an interface referred to as the "blackboard," which communicates with battlefield 

unit/entity models, behavioral models, and task execution models provided by the BDT to conduct AI training. Each 

unit or entity of the engagement simulation process is assigned a unique address on the blackboard. Through the 

Google Remote Procedure Call (gRPC), data including unit status, entity status, action requests, and results are 

transmitted and received, synchronizing with the AI learning process by accessing information at the respective 

address. 

ENEMY THREAT ANALYSIS (ETA) 

 

ETA utilizes learning models to identify the behavior of enemies and calculates the vulnerability of friendly forces  

through capability- and relation-based analysis using fuzzy logic. Thereafter, the behavior, vulnerabilities, and 

acquired information and attributes of the identified enemy are used to infer the probabilities of threat, yielding the 

degree and ranking of the enemy's threat (Figure 5). 

 

Enemy Behavior Analysis 

 

Enemy behavior analysis aims to infer the 

behavioral factors correlated to enemy threats 

through neural network training, considering the 

variations in enemy information and data 

acquired from the battlefield. This analytical 

model considers the temporal variations in the 

enemy's information and data, employing a 

battlefield dynamic GNN (Zhou, et al., 2020; 

Pareja, et al., 2020) that can learn the interactions 

between forces. This approach allows a 

probabilistic deduction of the enemy's tactical 

behaviors, including strategies such as assault, 

detour, siege and etc. (Figure 6). 

 

Figure 5. Overall Development Concept of ETA 

Figure 6. Development Concept of  Enemy Behavior Analysis 
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Vulnerability Analysis 

 

The vulnerability analysis applies capability 

and relation data to fuzzy models to evaluate the 

vulnerability of friendly forces to an enemy. 

Although the capability analysis focuses on the 

comparative aspects between enemy and 

friendly forces such as armor and detection, the 

relation analysis emphasizes the examination of 

enemy proximity through the consideration of 

factors including location and distance. 

Proximity analysis considers the closest point of 

approach (CPA) and the time for the enemy to 

reach the friendly force, which is called the time 

before hit (TBH), as depicted in Figure 7. 

 

Enemy Threat Degree and Ranking Analysis 

 

Enemy threat identification and ranking analysis 

leverage a dynamic GNN model that is 

constructed by integrating various facets such as 

the enemy’s behavior, vulnerabilities, 

information, data, and inherent characteristics. 

This enables the inference of the enemy's threat 

probabilities and facilitates the calculation of the 

enemy's threat level by employing a 

mathematical model, as represented in Figure 8. 

 

Learning Modeling of ETA 

 

The structural configuration of the learning model designated for enemy behavior and threat analysis is depicted in 

Figure 9. Within this structure, the dynamic graph applied to the learning model is characterized by the information 

of nodes and edges that undergo temporal alterations. The learning model utilizes GNN, a network adept at analyzing 

data arranged in graphs, and graph embedding, a technique that can express the entire graph as a vector. Subsequently, 

a recurrent neural network (RNN) is implemented to comprehend the evolution of the battlefield conditions over time, 

based on the results associated with each node in the GNN (Shim et al., 2022), as demonstrated in Figure 9. 

 

Learning Experiment and Result 

 

The battlefield simulation data used in the experiments with the training model depicted in Figure 9 were generated 

approximately 1000 times, utilizing four ground engagement scenarios. Within these scenarios, one task (behavior) 

was assigned to each enemy unit, comprising tactical movements, siege, and assault tactics. Each simulation contains 

30 enemy entities and 24 friendly entities, with 6 units each for enemy and friendly infantry. Moreover, unit- and 

entity-specific data, such as identification, type, firepower, position, damage status, and attacks, are generated every 

second for an approximate duration of 20 min. The six enemy force tasks (behaviors) applied in the simulation include 

garrison occupation, tactical movement, rally point behavior, besiege, assault, and ambush. 

 

Table 2 presents the results of the enemy behavior and threat probability analysis conducted using the proposed model 

on these simulated data. A comparative analysis using the proposed model and a typical multilayer perceptron (MLP) 

is provided as well. Moreover, the F1-score of the behavior analysis performance of the proposed model was 

Figure 7. Development Concept of Vulnerability Analysis 

Figure 8. Development Concept of Enemy  

Threat Degree and Ranking Analysis 
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determined to be 0.94, whereas the area under the ROC curve (AUROC) for the threat probability analysis 

performance was found to be 0.98, thereby indicating significant learning outcomes. Consequently, we are currently 

conducting learning experiments in simulated battlefield environments considering various enemy units, entities, and 

tasks (behaviors). 

 

 

 

Table 2. Experiment results of Enemy's Behavior and Threat Probability Analysis 

Items Behavior Analysis / F1  Threat Probability Analysis/ AUROC 

Proposed 

Model 

 

0.94 

 

0.98 

MLP 

(without 

GNN, RNN, 

Attention of 

Proposed 

Model) 

 

0.61 

 

0.66 

Figure 9. Learning Modeling for ETA 
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 COURSE OF ACTION (CoA) ANALYSIS 

 

A battlefield scenario for defensive ground operations under AICDS-G occurs when enemy and friendly forces are 

arrayed in a line of battle and confronting each other, with an anticipated enemy offense. As illustrated in Figure 10, 

the simulation initiates with the deployment of friendly forces up to a designated analysis point, after which it pauses 

to formulate an operational plan to counter the enemy’s assault. At this juncture of the analysis, the CoA analysis 

generates friendly action by employing an AI learning model that operates within the learning environment for 

engagement simulation based on BDT. The CoA of the friendly forces, i.e., the principal component of the CoA, is 

created by assessing the allotment and disposition of friendly forces. The formulated CoA is converted to an executable 

CoA within BDT, and the battlefield simulation proceeds with this CoA after the previously paused analysis point. 

 

Force Allotment Analysis (FAA) 

 

The Force Allotment Analysis (FAA) implements RL models to ascertain the optimal allocation or distribution of 

friendly forces and counter the identified enemy threats. FAA corresponds to the concept of allotting friendly force in 

the development of the CoA (Park et al., 2022). In the conventional CoA development process, the distribution of 

friendly forces is achieved by comparing the tangible or intangible combat power of the enemy and friendly forces 

based on their primary tasks of evaluation of their relative dominance (FM 6-0, 2015). However, the diversification 

and sophistication of weapon systems have posed limitations to the effective application of numerical analysis via 

Figure 10. Overall Development Concept of CoA Analysis 

Figure 11. Development Concept of FAA 
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conventional unit counts, combat power indexes, etc. FAA introduces a methodology that leverages RL to enhance a 

commander’s decision-making regarding force allotment. As portrayed in Figure 11, FAA encompasses learning 

support, setting avenues, force allotment learning, and force allotment inference. It further guides the distribution and 

allocation of available friendly units and entities by avenue and target based on the outcomes of ETA, user input data 

obtained from operation support, and avenue DB.  

 

The learning support feature of FAA facilitates an interconnected environment between the learning environment for 

engagement simulation and the AI learning model. This integration is specifically crafted to interface the state, an 

individual agent’s observation, action, and reward information, crucial for the structure of the Markov decision process 

(MDP) in RL. The primary functionality of this integration lies in the distribution of each learning scenario, thereby 

enabling parallel processing to learn multiple scenarios simultaneously.  

 

In FAA, avenues represented in the 

engagement are assumed to be candidate 

avenues after the completion of terrain 

analysis. These avenues are articulated in 2D 

coordinates as illustrated in Figure 12 and are 

retained in the Avenue DB of the operation 

support. They are abstractly expressed in 

terms of features such as total distance, 

width, gradient, terrain (mountainous, river, 

field, etc.), and whether vehicles can 

traverse, and be applied to the environment 

for the engagement simulation. Abstract 

representation of avenues enables users to 

rapidly identify them, select the desired 

avenues for each battlefield unit or entity, 

and request the FAA. 

 

On the battlefield, each unit or entity possesses only a partial view of the entire terrain, mediated through its sensing 

and communication apparatus. The essentiality of close coordination between units for victory leads FAA to construct 

the model utilizing multiagent reinforcement learning (MARL) in a decentralized partially observable Markov 

Figure 12. Concept for Setting Avenues 

Figure 13. Learning Modeling of FAA 
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decision process (Dec-POMDP) environment (Oliehoeck & Amato, 2016). Figure 13 depicts the architecture of the 

RL model proposed by FAA. By integrating value-based MARL approaches such as value decomposition networks 

(VDN) and QMIX (Rashid et al., 2020) within the centralized training with decentralized execution (CTDE) paradigm, 

the model is fashioned to learn cooperative behavior. This learning is achieved through the exchange of parameters 

among agents representing friendly forces, facilitated by long short-term memory (LSTM) cells. The action space in 

this model delineates actions as maneuvers by forces like infantry companies or tank platoons along avenues, and the 

provision of fire support against enemies by artillery units. Continuous updates and training of the entire network 

minimize temporal difference errors, employing deep Q-networks and defining a reward function predicated on the 

state information depicted in the engagement simulation environment, along with the outcomes of individual combat, 

the win/loss scenario, and task accomplishment. Instead of confining the learning network to a single scenario, a 

structure is designed that permits the network to adapt across various scenarios. The culmination of this process is the 

optimal allocation and distribution of friendly maneuver and artillery force, calibrated to counter the enemy within 

specific battlefield scenarios, and additionally, the sequential actions of friendly forces and their contributions to the 

engagement throughout the learning process. 

 

As a prototype to test the proposed methodology, we constructed a simulator of enemy and friendly engagements to 

perform MARL. To simulate a battle, enemy and friendly forces have the same speed, detection, and weapon ranges, 

and an attack is automatically triggered when an enemy is detected within weapon range. To define the MDP structure 

of RL, we define six elements of action: moving east–west, north–south, maintaining previous behavior for 

pathfinding, and no action (when the object is destroyed). The fundamental elements of the state are defined as latitude, 

longitude, altitude, velocity, and damage. 

 

 Figure 14. (a) illustrates the test battle scenario, staging a situation where two enemy tanks traverse the road in a 

formation, followed by the representation of MARL's outcomes on the planned path and collaboration of scattered 

friendly tanks in the vicinity of the enemy tanks (Figure 14. (b)). A total of 1 million timesteps of training were 

conducted, and 10 battles were engaged with the trained agent to compute the win rate. Observations thus far indicate 

a trend toward an elevation of the win rate to approximately 30%. This finding aligns closely with the outcomes of 

training the QMIX algorithm for 1 million timesteps within a simulated engagement of StarCraft II (Figure 14. (c)). 

Such results underscore that future enhancements in training will potentially engender a learning agent proficient in 

optimal path planning and allotment. 

 

Force Disposition Analysis  

 

Force Disposition Analysis is designed to optimize the movement of friendly units and entities from a designated 

analysis point to a specified temporal juncture. The conceptual realm of the disposition space is infinitely vast, 

compounded by computational resources and temporal constraints in executing engagement simulations for each 

decision, and subsequently reflecting the outcomes. To address this complexity, we employ a Bayesian optimization 

technique founded on Gaussian process regression (Snoek, Larochelle, & Adams, 2012). This approach is capable of 

Figure 14. (a) Test Battle Scenario, MARL Learning curves for (b) Test Battle Scenario and (c) StarCraftII 
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achieving adequate effectiveness by utilizing an adaptive quantum of training data and an uncertain distribution 

characterizing the battlefield. Constraints are instituted regarding the extent to which a unit or entity may be mobilized 

over a defined time frame, along with pre-established candidates for displacement.  

The specific intent and objectives as defined by a commander in a given scenario necessitate the formulation of an 

objective function. This function articulates a quantifiable outcome, such as the count of enemy forces arriving at a 

target location or the number of enemy forces neutralized by friendly units. The application of Gaussian process 

regression requires the estimation of a surrogate model or response surface containing a covariance matrix. This 

estimation is carried out by conducting an engagement simulation, in which friendly force disposition is treated as a 

variable while other information, including enemy force disposition and avenue information, remains fixed. Based on 

the probabilistic estimation of the objective function by the surrogate model, the acquisition function, which 

recommends candidate dispositions for upcoming examination of the function, can produce the disposition and 

uncertainty of the friendly forces that are expected to yield the best objective function value. 

 

OPERATION SUPPORT AND VISUALIZATION 

 

The operation support and visualization of AICDS-G integrates, processes, and visualizes battlefield information and 

data provided by BDT's battlefield simulation and analysis results of the enemy's threats and the friendly force's CoA 

to provide forms and schematics to users. The user operation support plays a role in operating and controlling each 

analysis software, building and managing the battlefield information and data provided by BDT and the results of each 

analysis into a database, and providing the data required by each analysis, as shown in Figure 15. 

 

User Operation Support 

 

The following is a description of the main configuration and features of user operations support. First, the battlefield 

information and data management support function accepts simulated battlefield data from BDT and organizes it 

within a database. It generates additional data, such as the motion or relocation status of units based on simulated 

battlefield data, and provides battlefield situation visualization and a battlefield data list. This enables users to 

comprehend the battlefield context.  

Figure 15. Overall Development Concept of Operation Support and Visualization 
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Second, the ETA operational support 

exploits the battlefield information and 

data stored in the database and the results 

of the ETA. It furnishes the user with 

fundamental details, such as the position, 

mobility, weapon range, etc., of the 

enemy force. Moreover, it supplies 

information concerning enemy threats, 

including enemy activities, such as 

movement and assault, the vulnerability 

of the friendly force to the enemy force, 

and the threat degree and ranking of the 

enemy force. These details are presented 

in schematics or forms to the user (Shim 

et al., 2022), as illustrated in Figure 16. 

 

As depicted in Figure 17, the CoA analysis 

operational support utilizes simulated 

battlefield data and ETA results stored in 

the database to furnish users with the 

allotment and displacement analysis 

outcomes of friendly forces obtained from 

the CoA analysis. In the case of the FAA, 

the stored terrain and environmental data 

are employed to generate a list of avenue 

candidates along with their attributes, 

which are subsequently visualized and 

presented to users. According to the 

avenues chosen through the FAA, the unit 

symbols and essential attributes of the 

corresponding friendly forces are rendered 

in schematic and format for each enemy 

force. Furthermore, it also visualizes and provides candidates with the friendly force displacement analysis and the 

optimal displacement results of friendly forces, as calculated through Bayesian optimization techniques. 

 

Multiview Visualization  

 

Figure 16. Operation Support Concept for ETA 

Figure 17. Operation Support Concept for CoA Analysis 

Figure 18. Multiview of AICDS-G 
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The development of multiview visualization is developed to support command decisions by furnishing commanders 

with sequential diagrams at pivotal decision junctures utilizing simulated battlefield data, ETA, and CoA analysis 

results (Ryu, Shim, & Park, 2022). As presented in Figure 18, this approach amalgamates the visualization elements 

of the battlefield situation, enemy threat circumstances, and force allotment and displacement for each stage of 

AICDS-G. Furthermore, it interweaves these visualization components with the data generated during the analysis 

process of the learning model, thereby constructing a multiview visualization screen. To this end, multiview 

visualization employs an array of temporal, linked, and geospatial visualization representation techniques (Park & 

Yun, 2021). 

CONCLUSION 

 

To build an intelligent command and control system, the command decision support technology must be developed 

using AI. Therefore, we are developing AICDS-G technology with the capability to support command decisions 

during ground operations. Herein, we developed the concept, methodology, model, and architecture of the AICDS-G 

technology. 

For developing AICDS-G, we examined the evolution of the BDT and simulated battlefield conditions, including 

enemy and friendly forces and their behaviors, to generate realistic simulation data that can serve as a learning 

environment. Furthermore, we proposed the development of an ETA module that forecasts the behavior and threats 

of enemy forces using GNN and RNN models. Subsequently, we discussed the development of an optimal force 

allotment and disposition methodology via AI learning models, such as reinforcement learning and Bayesian 

optimization, synergized with the environment of the engagement simulation. Finally, we presented the development 

of user operation support and multiview visualization for AICDS-G. 

In future, through the integration of these AICDS-G development concepts and methodologies, we plan to verify each 

developmental function and performance by implementing them into application software that can be adeptly utilized 

by users. 
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